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A topological space X is called a topological fractal if X =
⋃

f∈F f(X) for a finite 
system F of continuous self-maps of X, which is topologically contracting in the 
sense that for every open cover U of X there is a number n ∈ N such that for any 
functions f1, . . . , fn ∈ F , the set f1 ◦ · · · ◦ fn(X) is contained in some set U ∈ U . If, 
in addition, all functions f ∈ F have Lipschitz constant < 1 with respect to some 
metric generating the topology of X, then the space X is called a Banach fractal. It 
is known that each topological fractal is compact and metrizable. We prove that a 
zero-dimensional compact metrizable space X is a topological fractal if and only if 
X is a Banach fractal if and only if X is either uncountable or X is countable and 
its scattered height �(X) is a successor ordinal. For countable compact spaces this 
classification was recently proved by M. Nowak.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the milestones of Theory of Fractals is the result of Hutchinson [9] (cf. also Barnsley [3] and Hata 
[8]) saying that for any finite family F of Banach contractions of a complete metric space X, there is a 
unique non-empty compact set AF ⊂ X such that

AF =
⋃
f∈F

f(AF ),
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and, moreover, for every nonempty compact set K, the sequence of iterations Fn(K) (of the map F :
K(X) → K(X), F : D �→

⋃
f∈F f(D), defined on the hyperspace K(X) of nonempty compact subsets of X) 

is convergent to AF with respect to the Hausdorff–Pompeiu metric on K(X). Finite families of mappings 
in this context are called iterated function systems (briefly, IFSs), and compact sets AF generated by IFSs 
are called IFS-attractors or deterministic fractals in the sense of Hutchinson and Barnsley.

The Hutchinson–Barnsley theory attracted many mathematicians and has been deeply studied since early 
80s. In the last years the following problem was discussed:

Problem 1. Detect compact metric spaces which are (or are not) attractors of IFSs consisting of Banach 
contractions (or weaker types of contractions), or which are (or are not) homeomorphic to such attrac-
tors.

Such a problem was considered for example in [2,4,5,7,10,12,13,15–17]. In particular, M. Nowak [15]
proved that a compact countable space X is homeomorphic to an IFS-attractor if and only if the scattered 
height �(X) of X is a successor ordinal. The scattered height �(X) is defined for any scattered topolog-
ical space X as follows. Let us recall that a topological space X is scattered if each subspace A ⊂ X

has an isolated point. The Baire Theorem guarantees that each countable complete metric space is scat-
tered.

Let X be a topological space. For a subset A ⊂ X denote by A(1) the set of non-isolated points of A. 
Put X(0) = X and for every ordinal α define the α-th derived set X(α) by the recursive formula

X(α) =
⋂
β<α

(
X(β))(1).

The intersection X(∞) =
⋂

α X(α) of all derived sets has no isolated points and is called the perfect kernel
of X. For each point x ∈ X \X(∞) there is a unique ordinal �(x) such that x ∈ X(�(x)) \X(�(x)+1), called 
the scattered height of x. For a scattered topological space X the perfect kernel X(∞) is empty and the 
ordinal �(X) = sup{�(x) : x ∈ X} is called the scattered height of X. For a non-scattered space X we put 
�(X) = ∞ and assume that ∞ is larger than any ordinal number.

In this paper we shall extend Nowak’s characterization of countable IFS-attractors to the class of all 
zero-dimensional compact metrizable spaces and shall detect zero-dimensional Hausdorff spaces which are 
homeomorphic to topological or Banach fractals.

Following [2], we define a Hausdorff topological space X to be a topological fractal if X =
⋃

f∈F f(X)
for a finite system of continuous self-maps of X, which is topologically contracting in the sense that for 
every open cover U of X, there is n ∈ N such that for any maps f1, . . . , fn ∈ F , the set f1 ◦ · · · ◦ fn(X) is 
contained in some set U ∈ U . This definition implies that each topological fractal is compact and metrizable 
(since the family {f1 ◦ · · · ◦ fn(X) : n ∈ N, f1, . . . , fn ∈ F} is a countable network of the topology 
of X).

A compact metrizable space X is called a Banach fractal if X =
⋃

f∈F f(X) for a finite system F of 
self-maps which have Lipschitz constant < 1 with respect to some metric that generates the topology of X. 
It follows that a space X is a Banach fractal if and only if X is homeomorphic to the attractor of an IFS 
consisting of Banach contractions on a complete metric space. It is easy to see that each Banach fractal is 
a topological fractal. On the other hand, there exist examples of topological fractals which are not Banach 
fractals (see, e.g., [2] and [16]). However, such examples do not exist among zero-dimensional spaces. We 
recall that a topological space X is called zero-dimensional if it has a base of the topology consisting of 
closed-and-open subsets. In the following theorem we shall show that each zero-dimensional topological 
fractal is a Banach fractal and moreover, is a Banach ultrafractal.

A compact topological space X is called a Banach ultrafractal if X =
⋃

f∈F f(X) for a finite family F of 
continuous self-maps of X such that the family (f(X))f∈F is disjoint and for any ε > 0 there is an ultrametric 



24 T. Banakh et al. / Topology and its Applications 196 (2015) 22–30
d generating the topology of X such that Lip(F) = supf∈F supx�=y
d(f(x),f(y))

d(x,y) < ε. We recall that a metric 
d on X is called an ultrametric if it satisfies the strong triangle inequality d(x, z) ≤ max{d(x, y), d(y, z)}
for any points x, y, z ∈ X. It is well-known [11, §I.7] that the topology of a compact metrizable space X is 
generated by an ultrametric if and only if X is zero-dimensional.

So, for any compact metrizable space we have the implications

Banach ultrafractal ⇒ Banach fractal ⇒ topological fractal,

none of which can be reversed in general. However, for zero-dimensional compact metrizable spaces all these 
notions are equivalent.

Theorem 1. For a zero-dimensional compact metrizable space X, the following conditions are equivalent:

(1) X is a topological fractal;
(2) X is a Banach fractal;
(3) X is a Banach ultrafractal;
(4) the scattered height �(X) of X is not a countable limit ordinal

(so, �(X) is either ∞ or a countable successor ordinal).

This theorem will be proved in Section 4 after some preparatory work made in Sections 2 and 3.

2. Normed height trees

Theorem 1 will be proved with help of a representation of a given zero-dimensional compact metrizable 
space as the boundary of a normed height tree. So, in this section we shall recall the necessary information 
about (height) trees and their boundaries.

By a tree we shall understand a partially ordered set T such that T has the (unique) smallest element 
minT and for every x ∈ T the lower set ↓x = {y ∈ T : y ≤ x} is finite and linearly ordered. For any two 
elements x, y ∈ T the intersection ↓x ∩ ↓y, being finite and linearly ordered, has the largest element, which 
will be denoted by x ∧ y. For any element x ∈ T of a tree T its upper set ↑x = {y ∈ T : x ≤ y} is a subtree 
of T . The set succ(x) of minimal elements of the set ↑x \{x} is called the set of successors of x. For a subset 
A ⊂ T of a tree T let

↓A =
⋃
a∈A

↓a and ↑A =
⋃
a∈A

↑a

be the lower and upper sets of A, respectively.
By a branch of T we understand any maximal linearly ordered subset of T . The set ∂T of all branches 

of T is called the boundary of the tree T . For two distinct branches x, y ∈ ∂T let x ∧ y = max(x ∩ y) ∈ T . 
For an element x ∈ T put ⇑x = {L ∈ ∂T : x ∈ L}.

Let ω1 = {−1, ∞} ∪ ω1 be the linearly ordered set of countable ordinals enlarged by two points −1 and 
∞ such that −1 < α < ∞ for any α ∈ ω1.
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Definition 1. By a height tree we understand a pair (T, �) consisting of a tree T and a function � : T → ω1

(called the height function on T ) such that for every vertex x ∈ T , the following conditions are satisfied:

• the set succ(x) contains exactly one point ∗x of height �(∗x) = −1;
• if �(x) ∈ {−1, 0}, then succ(x) = {∗x} and if �(x) > 0, then the set succ(x) is countably infinite;
• if �(x) = ∞, then all but finitely many points of the set succ(x) have height ∞;
• if 0 < �(x) < ω1, then �(x) = supy∈succ(x)(�(y) + 1) = limy∈succ(x)(�(y) + 1) (which means that for 

any ordinal α < �(x) there exists a finite subset F ⊂ succ(x) such that α < �(y) + 1 ≤ �(x) for all 
y ∈ succ(x) \ F ).

For every vertex x ∈ T of a height tree T , the unique point ∗x ∈ succ(x) with �(∗x) = −1 will be called 
the central point of x. For each point x ∈ T \ {minT} we shall also define the neighbor point �x letting 
�x = ∗y where y ∈ T is the unique point such that x ∈ succ(y). For x = minT the neighbor point has not 
been defined, so we put �x := ∗x.

Definition 2. The boundary ∂T of a height tree T carries the canonical topology generated by the subbase

{⇑x : x ∈ T, �(x) �= −1} ∪ {∂T \ ⇑x : x ∈ T},

where ⇑x := {x̄ ∈ ∂T : x ∈ x̄} for x ∈ T .

Definition 3. Let T be a height tree T . A norm ‖ · ‖ : T → R on T is a function having the following 
properties:

• for any vertices x ≤ y of T we get ‖x‖ ≥ ‖y‖ ≥ 0;
• a vertex x ∈ T has norm ‖x‖ = 0 if and only if �(x) = −1;
• limx∈T ‖x‖ = 0, which means that for any positive real number ε, the set {x ∈ T : ‖x‖ ≥ ε} is finite.

A normed height tree is a height tree T endowed with a norm ‖ · ‖.

The norm ‖ · ‖ of a normed height tree T determines an ultrametric d on ∂T defined by

d(x, y) =
{

max{‖z‖ : z ∈ (x ∪ y) ∩ succ(x ∧ y)} if x �= y

0 if x = y

for any branches x, y ∈ ∂T . This ultrametric will be called the canonical ultrametric on ∂T . It is easy to 
check that the canonical ultrametric d generates the canonical topology on ∂T .

A compact metrizable space X is called unital if X is either uncountable or X is countable and the 
derived set X(�(X)) is a singleton. It is easy to see that each compact metrizable space X can be written as 
a finite topological sum of its unital subspaces. Indeed, if X is uncountable, then X is unital, and if X is 
countable, then there are only finitely many point of maximal scattered height. This, together with a known 
fact that each countable compact space is zero-dimensional gives us an appropriate division.

Proposition 1. Each unital zero-dimensional compact metrizable space X is homeomorphic to the boundary 
∂T of some normed height tree T such that �(minT ) = �(X). Moreover, if �(X) is not a limit ordinal 
(i.e., it is a successive ordinal or equal to ∞), then T can be taken so that �(x) + 1 = �(minT ) for all 
x ∈ succ(minT ) \ {∗min T } (here ∞ + 1 = ∞).
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Proof. Fix an ultrametric d of diameter ≤ 1 generating the topology of the compact zero-dimensional 
space X. Let U0 = {X}. We shall inductively construct a sequence (Un)n∈ω of disjoint closed covers of X
and a sequence of maps (∗n : Un → X)n∈ω such that for every n ∈ ω and U ∈ Un, the following conditions 
are satisfied:

(1) ∗n(U) ∈ U (�(U));
(2) Un+1(U) = {V ∈ Un+1 : V ⊂ U} is a disjoint cover of U by unital compact spaces;
(3) {∗n(U)} ∈ Un+1(U);
(4) any set V ∈ Un+1(U) distinct from {∗n(U)} is closed-and-open in X;
(5) each neighborhood of ∗n(U) contains all but finitely many sets of the cover Un+1(U);
(6) each set V ∈ Un+1(U) has diam(V ) ≤ 2−n.

Moreover, if �(X) is not a limit ordinal, then

(7) �(X) = �(U) + 1 for all U ∈ U1 \
{
{∗0(X)}

}
.

Assume that for some n ∈ ω a cover Un and a map ∗n : Un → X have been constructed. For every 
set U ∈ Un we shall construct a closed cover Un+1(U) satisfying the conditions (2)–(6) of the inductive 
construction. By our assumption, U is a unital space. If U is countable, then put ∗n(U) be the unique point 
of the singleton U (�(U)). If U is uncountable, then let ∗n(U) be any point of the perfect kernel U (∞) of U .

Take any disjoint finite cover F(U) of the compact zero-dimensional space U ⊂ X by closed-and-open 
subsets of diameter ≤ 2−n. Note that for n = 0 we can take F(X) = {X} because diam(X) ≤ 1. Find 
a unique set V0 ∈ F(U) containing the point ∗n(U) and choose a neighborhood base {Vm}∞m=1 at ∗n(U)
consisting of closed-and-open sets such that Vm ⊂ Vm−1 for every m ∈ N. If �(V 0) < ω1, then we can 
replace (Vm)∞m=1 by a suitable subsequence and assume that limm→∞(�(Vm \ Vm+1) + 1) = �(V0) = �(U)
(here we assume that ∞ + 1 = ∞). Moreover, if n = 0 and �(U) = �(X) is not a limit ordinal, then we can 
assume that �(Vm \ Vm+1) + 1 = �(U) for all m ∈ ω.

Consider the cover

U ′
n+1(U) =

(
F(U) \ {V0}

)
∪ {Vm \ Vm+1 : m ∈ ω} ∪

{
{∗n(U)}

}
of U . For every V ∈ U ′

n+1(U) find a finite disjoint cover Un+1(V ) of V by unital compact spaces such that 
�(V ′) = �(V ) for all V ′ ∈ Un+1(V ), and put Un+1(U) =

⋃
V ∈U ′

n+1(U) Un+1(V ). It is clear that the cover 
Un+1(U) satisfies the conditions (2)–(7) of the inductive construction.

Let Un+1 =
⋃

U∈Un
Un+1(U). For every (unital) space V ∈ Un+1 choose a point ∗n+1(V ) ∈ V (�(V )). This 

completes the inductive construction.
Now we construct a normed height tree T whose boundary ∂T is homeomorphic to X. Let

T = {(n,U) : n ∈ ω, U ∈ Un}.

Given two pairs (n, U), (m, V ) ∈ T we write (n, U) ≤ (m, V ) if n ≤ m and V ⊂ U . Define a height function 
� : T → ω1 by the formula

�(n,U) =
{
−1, if n > 0 and U = {�n−1(U)},
�(U), otherwise.

Here �(U) stands for the scattered height of the space U (which is equal to ∞ if U is uncountable) and 
�n−1(U) = ∗n−1(Ũ) where Ũ ∈ Un−1 is a unique set in Un−1 containing U .
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Define a norm ‖ · ‖ on T letting

‖(n,U)‖ = diam(U ∪ {�n−1(U)}) for (n,U) ∈ T.

Here we assume that �−1(U) = ∗0(U) for any set U ∈ U0 = {X}.
The norm ‖ · ‖ determines a canonical ultrametric generating the canonical topology on the boundary 

∂T of T . We claim that the map

h : X → ∂T, h : x �→ {(n,U) : n ∈ ω, x ∈ U},

is a homeomorphism.
Indeed, observe that each branch y ∈ ∂T consists of the decreasing nested sequence of compact sets with 

vanishing diameters, which implies that 
⋂

(n,U)∈y U = {h−1(y)} is a singleton. So, h is a bijection. To see 
that h is continuous, it suffices to check that for each subbasic open set B ⊂ ∂T the preimage h−1(B) is 
open in X. By Definition 2 of the canonical topology on ∂T , the subbasic set B is of the form B = ∂T \ ⇑t
for t = (n, U) ∈ T or B = ⇑t for t = (n, U) ∈ T with �(t) �= −1. In the first case the set h−1(B) = X \ U is 
open since the set U ∈ Un is closed; in the second case the set h−1(B) = U is open since the set U ∈ Un has 
�(n, U) �= −1 and hence is open in X by the condition (4) of the inductive construction. Being a continuous 
bijective map between compact Hausdorff spaces, the map h : X → ∂T is a homeomorphism. Observe that 
condition (7) guarantees that the second assertion of Proposition 1 holds too. �
3. Morphisms between height trees

In this section we shall discuss morphisms between height trees.

Definition 4. For height trees T, S a map f : T → S is called a height morphism if for every x ∈ T the 
following conditions are satisfied:

• �(f(x)) ≤ �(x),
• f(succ(x)) ⊂ succ(f(x)) and f(∗x) = ∗f(x),
• for each y ∈ succ(f(x)) \ {∗f(x)} there is at most one element z ∈ succ(x) \ {∗x} such that y = f(z).

Each height morphism f : T → S of height trees induces a map f̄ : ∂T → ∂S of their boundaries. 
The map f̄ assigns to each branch b ∈ ∂T of T the unique branch of S containing the linearly ordered set 
f(b) = {f(x) : x ∈ b}. We are interested in finding conditions under which f̄ is Banach contracting with 
respect to the canonical ultrametrics on ∂T , ∂S generated by suitable norms on the height trees T and S.

Definition 5. Let T, S be normed height trees. A height morphism f : T → S is called λ-Lipschitz for a real 
constant λ if ‖f(x)‖ ≤ λ · ‖x‖ for each x ∈ T .

The definition of the height morphism and the canonical ultrametric on the boundary of a normed height 
tree implies:

Lemma 1. Let T, S be normed height trees and λ be a positive real constant. For each λ-Lipschitz height 
morphism f : T → S, the induced boundary map f̄ : ∂T → ∂S is λ-Lipschitz with respect to the canonical 
ultrametrics on ∂T and ∂S.

The following lemma will help us to construct surjective height morphisms between height trees.
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Lemma 2. For any height trees T, S with �(minT ) ≥ �(minS) there exists a surjective height morphism 
f : T → S.

Proof. This lemma will be proved by transfinite induction on the ordinal �(minT ) ∈ ω1. It is trivial if 
�(minT ) ∈ {−1, 0}. Assume that for some ordinal α < ω1 the lemma has been proved for any height 
trees T, S with �(minS) ≤ �(minT ) < α. Take any height trees T, S with �(minS) ≤ �(minT ) = α. If 
�(minS) ∈ {−1, 0}, then the tree S is order isomorphic to ω and by a trivial reason, there exists a unique 
surjective height morphism f : T → S. So, we assume that �(minS) > 0, which implies that the set 
succ(minS) is infinite.

By Definition 1, the roots t = minT and s = minS of the trees T and S have heights

�(t) = sup{�(y) + 1 : y ∈ succ(t)} ≥ �(s) = sup{�(x) + 1 : x ∈ succ(s)},

which allows us to construct a bijective map f0 : dom(f0) → succ(s) \ {∗s} defined on a countable infinite 
subset dom(f0) of succ(t) \ {∗t} such that �(f0(x)) ≤ �(x) for any x ∈ dom(f0). Extend the map f0 to a 
map f̄0 : succ(t) → succ(s) letting f̄0

(
succ(t) \ dom(f0)

)
= {∗s}. Observe that for every x ∈ succ(t) we get 

�(f̄0(x)) ≤ �(x) < α. Then by the inductive assumption there exists a surjective morphism fx : ↑x → ↑f0(x)
of the height subtrees of the trees S and T . The morphisms fx, x ∈ succ(t), compose a surjective morphism 
f : T → S defined by f(t) = s and f(z) = fx(z) for any x ∈ succ(t) and z ∈ ↑x.

Finally, we consider the case of height trees T, S with �(minS) ≤ �(minT ) = ∞. For every n ∈ N let 
lev−1

T (n) = {t ∈ T : |↓t| = n} and lev−1
S (n) = {s ∈ S : |↓s| = n} be the n-th levels of the trees T and S, 

respectively. It follows that lev−1
T (1) = {minT} and lev−1

S (1) = {minS}. Let f1 : lev−1
T (1) → lev−1

S (1) be a 
unique map. By induction for every n ≥ 2 we can construct a map fn : lev−1

T (n) → lev−1
S (n) such that for 

every t ∈ lev−1
T (n − 1) the following conditions are satisfied:

• fn(succ(t)) = succ(fn−1(t));
• fn(∗t) = ∗fn−1(t);
• for every point y ∈ succ(fn−1(t)) distinct from ∗fn−1(t) there is a unique point x ∈ succ(t) with y = fn(x)

and �(x) = ∞;
• each point x ∈ succ(t) with �(x) < ω1 has image fn(x) = ∗fn−1(t).

Then the union f =
⋃∞

n=1 fn : T → S is the required surjective height morphism of T onto S. �
Lemma 3. Assume that X is either an uncountable zero-dimensional compact metrizable space X or a unital 
countable space whose scattered height �(X) is a successor ordinal. Then X is a Banach ultrafractal.

Proof. There is nothing to prove if |X| ≤ 1. So, we assume that |X| > 1 and hence X is infinite (since X
is unital). By Proposition 1, X is homeomorphic to the boundary ∂T of a normed height tree T such that 
�(X) = �(minT ) = �(x) +1 for all x ∈ succ(min T ) \{∗min T }. Write succ(minT ) = {xn}n≤ω where xn �= xm

for any distinct numbers n, m ≤ ω, and xω = ∗min T . Define a function f1 : succ(min T ) → succ(min T ) by 
the formula

f1(x) =
{
xn+1 if x = xn for some n ∈ ω

∗min T otherwise.

By Lemma 2, for every x ∈ succ(minT ) there is a surjective height morphism fx : ↑x → ↑f1(x). The height 
morphisms fx, x ∈ succ(min T ), form a height morphism f : T → T such that f(minT ) = minT and 
f |↑x = fx for every x ∈ succ(minT ). Observe that f(T ) = {minT} ∪ ↑{xn}1≤n≤ω and the boundary map 
f̄ : ∂T → ∂T has image f̄(∂T ) = {b ∈ ∂T : b ∩ {xn}1≤n≤ω �= ∅}.
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Note that for x0 we have �(minT ) ≥ �(x0) so, by Lemma 2, there exists a surjective height morphism 
g : T → ↑x0. Then for every branch b ∈ ∂T the set ḡ(b) := {minT} ∪ g(b) is a branch of ∂T .

Consider the finite family F = {f, g} of height morphisms on the tree T . The definitions of the maps 
from F guarantee that T is the disjoint union of {ϕ(T )}ϕ∈F , which implies that ∂T is the disjoint union of 
{ϕ̄(∂T )}ϕ∈F . To show that X is a Banach ultrafractal, it remains for every 1 > λ > 0 to find a norm ‖ · ‖
on T which respect to which the morphisms from F are λ-Lipschitz.

Let T−1 = ∅, T0 = {minT} and Tn+1 = F(Tn) =
⋃

ϕ∈F ϕ(Tn) for n ∈ ω. Note that

⋃
n∈ω

Tn ⊃ {x ∈ T : �(x) ≥ 0}

which can be shown by the induction on the levels of the tree T.
The definitions of the morphisms from F guarantee that for every n ∈ ω and a point y ∈ Tn+1 \ Tn of 

height �(y) �= −1 there is a unique point x ∈ Tn such that y ∈ F({x}). Then the function ‖ · ‖ : T → [0, 1]
defined by ‖x‖ = 0 if �(x) = −1 and ‖x‖ = λn if x ∈ Tn \ Tn−1 is a well-defined norm on T turning the 
maps ϕ ∈ F into λ-Lipschitz morphisms of T . By Lemma 1, the induced boundary morphisms ϕ̄ : ∂T → ∂T

are λ-Lipschitz with respect to the canonical ultrametric on T generated by the norm ‖ · ‖. Therefore ∂T
and X are Banach ultrafractals. �
4. Proof of Theorem 1

Given a zero-dimensional compact metrizable space X we need to check the equivalence of the following 
conditions:

(1) X is a topological fractal;
(2) X is a Banach fractal;
(3) X is a Banach ultrafractal;
(4) the scattered height �(X) of X is not a countable limit ordinal.

In fact, the implications (3) ⇒ (2) ⇒ (1) are trivial. The (non-trivial) implication (1) ⇒ (4) follows from 
[1,14] and [15]. The first two papers show that a Hausdorff space is a topological fractal iff it is homeomorphic 
to an attractor of IFS consisting of weak (Edelstein) contraction. This fact combined with a result from [15]
yields the implication (1) ⇒ (4). The implication (4) ⇒ (3) is proved in Lemma 3 for unital spaces. Let us 
show that this implication holds also if X is not unital. In this case X is a compact countable space such 
that the set X(�(X)) contains more than one point. As was remarked earlier, X can be written as a disjoint 
union X = X1 ∪ · · · ∪Xn of unital spaces with �(Xi) = �(X) for all i ≤ n. Fix any positive λ < 1. By (the 
proof of) Lemma 3, each space Xi can be written as a finite disjoint union Xi =

⋃
f∈Fi

f(Xi) for a family 
Fi of continuous selfmaps of Xi with Lipschitz constant ≤ λ, for a suitable ultrametric di < 1 on Xi. We 
define an ultrametric on X as follows: for every x, y ∈ X,

d(x, y) =
{
di(x, y), x, y ∈ Xi,

1/λ, otherwise.

The Banach Contracting Principle guarantees that for every fi ∈ Fi the set Fix(fi) = {x ∈ Xi :
fi(x) = x} is a singleton. Extend the maps fi ∈ Fi to continuous maps f̄i : X → Xi such that f̄i(X \Xi) =
Fix(fi). Then the function system F =

⋃
1≤i≤n{f̄i : fi ∈ Fi} witnesses that X =

⋃
f∈F f(X) is a Banach 

ultrafractal.
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Remark 1. After writing this paper we learned that E. D’Aniello and T.H. Steele independently obtained 
a similar result [6]. Namely, they proved that each uncountable closed nowhere dense subset of [0, 1] is a 
Banach fractal. As the class of topological spaces which are homeomorphic to uncountable closed nowhere 
dense subsets of [0, 1] coincides with the class of zero-dimensional uncountable compact spaces, this result 
is quite related to ours.

However, our method is completely different (as E. D’Aniello and T.H. Steele were working on the real 
line). Also, we use strong notion of Banach ultrafractal, and have some control on the number of contractions 
in the IFS consists of (see the proof of Lemma 3).
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